243. Enantioselective Addition of Chiral Organotitanium Derivatives to Aldehydes

Preliminary Communication

by Alan *G.* **Oliverol),** Beat Weidmann2) and **Dieter** Seebach

Laboratorium **fur** Organische Chemie der Eidgendssischen Technischen Hochschule, ETH-Zentrum, Universitatsstrasse **16,** CH-8092 Zurich

(30. IX. 81)

Summary

Alkoxy- and aryloxy-organotitanium compounds **2-4** derived from (S)-2 methyl-1-butanol, (R)-2-butanol, (-)-menthol, quinine, cinchonine, and *(S*)-1.1'binaphthol are added to aromatic aldehydes to give optically active alcohols **5-10** in enantioselectivities of up to 88% e.e., with nucleophilic transfer of methyl, phenyl, and 1-naphthyl groups. The *Tables 1-3* list the effects of varying the reagents, the substrates, and the reaction conditions of the new asymmetric synthesis.

Based on *single* experiments, there was an earlier optimistic ('8% e.e. ... promising') [I] and a later pessimistic ('13% e.e. ... disappointingly low') [2] statement concerning enantiomeric excess in asymmetric synthesis with chiral organotitanium reagents. Based on more *extensive* experimentation, we are pleased to announce, that for once the optimists were right, and that we have been able to achieve enantiomeric excesses of up to 88% in such reactions. This result is comparable with or superior to the best data reported in the literature about enantioselective organometallic additions to aldehydes [3-51.

In fact, our activity $[1]$ $[6-8]$ in the field of organotitanium and -zirconium reagents was triggered by the desire to plan asymmetric carbonyl additions more rationally than was possible by exploiting the elusive effects between lithium reagents and chiral solvents **[3]** [9]. The 'more solid' bonds [lo] between titanium and (chiral) OR*-groups (* designating the chirality) are readily made by *iso*propoxy/R*O-substitution in chloro-triisopropoxytitanium [11 [6] with azeotropic removal of the 2-propanol³) formed.

The chiral chlorotitanates **1** thus prepared are converted *in situ* to the organotitanates **2** by reaction with RLi- or RMgX-derivatives, as described previously [l]

I) Undergraduate research student at ETH-Zurich (1980/81).

^{2,} Part of the projected Ph.D. thesis of *B. Weidmann,* ETH-Zurich.

^{3,} Benzene can be used as solvent for the azeotropic distillation; it is removed and replaced by the solvent in which the Cl/R-exchange $1 \rightarrow 2$ and the subsequent reactions are carried out.

[6]. Solutions of the reagents **3** and **4** derived from quinine and cinchonine4), and from (S) -binaphthol $[11]$ ⁵), respectively are obtained similarly. The results of the asymmetric syntheses of the alcohols *5,* **6, 7, 9** and **LO** and of the lactone **8** by enantioselective addition⁶) of the reagents $2-4$ to aldehydes are described in the *Tables 1,* 2 and *3,* with variations of the OR*-group, of the aldehyde, and of the reaction conditions, respectively.

Entry	Reagent	Product			
			$[a]_D$	$%$ e.e.	
	2a	$(S) - 5$	-3.64°	8	
$\overline{2}$	2 _b	$(S) - 5$	-5.42°	12	
3	2c	$(S)-5$	-10.46°	23	
$\overline{4}$	3a	$(S)-5$	-6.32°	14	
5	3b	$(R) - 5$	$+ 4.50^{\circ}$	10	
6	4а	$(S) - 5$	-12.58°	28	
7	4 _b	$(S) - 5$	-26.90°	59	
8	2d	$(R) - 10$	$+ 2.87^{\circ}$	29	
9	4c	$(S) - 10$	-8.84°	88	

Table 1. Additions of differently chirally modified methyl and phenyl titatnium reagents 2-4 to benzaldehyde (entries *1-7)* and *to* p-lolylaldehyde (entries 8 and *9).* With **2** and **3** diethyl ether is used as solvent, reaction conditions: 3 h/ -60° , then $+20^{\circ}$; with 4, solvent: THF, 3 h/ -20° . Conditions of a_{D} -measurement and optical purities see *[5]* and [12]. Work-up see previous papers [I] [6] [7] and footnote 6.

4, Since the C1 of **1** is also replaced by OR in the presence of amines, we used the sequence [Ti (OCHMe₂)₄ + **R***OH \rightarrow Ti (OR*) (OCHMe₂)₃ (A); A + ¹/₂ TiCl₄ \rightarrow ClTi (OR*) (OCHMe₂)₂ (**B**) + ClTi (OCHMe2)3 *(C);* **B/C+** CH3Li- **3** + CH3Ti (OCHMe2)3] for preparation of **3,** with the obvious disadvantage of achiral dilution of the reagent.

Precursors of **4** (\mathbb{R} = CI) are obtained directly from CITi(OR')₃ and the binaphthol of $[a]_{\text{D}} = -34.1^{\circ}$ $(c=1, THF)$ [11] with removal of 2 R'OH. *5,*

The conversions are >95% in all cases. The yields of isolated products depend upon the ease of separation from R*OH. which is volatile in the case of **2a** and **2b,** and which is soluble in acid or base in the cases of **3** and **4,** respectively; with menthol (from **2c-2e)** we encountered problems when the product volatility was too high *(cj 5,* **8).** *h,*

Table 2. *Additions of chiral methyl and naphthyl titanium reagents of type* 2 *and 4 to different aldehydes.* For conditions see head of *Table 1*. The $[a]_D$ -values of optically pure samples and the conditions of measurement were taken from the following references: **6** (31, *8* [13], *9* (31; *7* was converted to *5* [3] by reduction (Na₂S: NO₂ \rightarrow NH₂), diazotation (NaNO₂/HCl, 0°; NH₂ \rightarrow N₂[®]), and reduction

Entry	Aldehyde	Reagent	Product		
				[a] _D	$%$ e.e.
	Mesityl aldehyde	2c	$(R)-6$	6.34°	12
2	o-Nitro-benzaldehyde	2c	$(S) - 7$	$+140^\circ$	76
3		4b	$(S) - 7$	7.49°	
4	Methyl o-formyl-benzoate	2c	$(S)-8$	7.58°	25
5	1-Naphthaldehyde	2с	$(S) - 9$	-46°	58
6		4b	$(S) - 9$	-37°	46
	Acetaldehyde	2е	$(R) - 9$	3.81°	

(HOAc/NaOAc, THF, 20°; $N_2^{\oplus} \rightarrow H$).

Table 3. *Preparation of alcohol* **7** *from methyl-trimethoxy-titanium* (2c) *and o-nrtrobenzaldehyde under diffrrent reaction condifions.* For optical purity of **7** see head of *Table* 2. Preparation of the solutions of 2c:1 was freed from benzene³), dissolved *(ca.* $0.1~M$) in the desired solvent, and combined with a molequiv. of CH3Li (1.7M in ether). The aldehyde was added at - *60",* after 3 h the mixture was warmed to + 20" within 12 h. **A** kryostat with temperature control was used for the experiment of entry 5.

2488 **HELVETICA CHIMICA ACTA - Vol. 64, Fasc. 7 (1981) - Nr. 243**

It can be seen, that the highest selectivities are obtained with the menthol⁶ $(7)^{8}$) and with the binaphthol derivatives (entries 7 and 9 in Table *1,* entries 2, 5, and 6 in Table *2).* With the axially chiral binaphtholates **4,** the nature of the third OR-group appears to be crucial (entries 6 and 7 of Table *I),* see the topology in **11.**

The examples in Table *2* indicate that the reaction is strongly substrate-dependant *[cf.* entry 1 (*Re-approach*) with entry 2 (*Si-approach*)] and that it is better to add methyl to naphthaldehyde than naphthyl to acetaldehyde *(cJ* entry 5 with entry 7), other things being equal.

Finally, the strong solvent *(5.5%* (R) e.e. in THF, 76% *(S)* e.e. in ether) and temperature (22% e.e. at -100 to -40° , 76% at -60 to $+20^{\circ}$) effects are evident from Table *3,* entries 4 *vs.* 2 and entry *5 vs.* 2, respectively.

The approach to enantioselective carbonyl additions⁹) by use of simple nonalkali or -alkaline earth alkyl- and aryl-organometallic reagents⁹) described here has the following advantages: *(i)* It makes use of the full equivalent of the organometallic reagent; *(ii)* it exhibits a high functional-group selectivity - only aldehydes and ketones are attacked (see products **7** and **8,** Tables *2* and *3,* and [l] [6] [7]); *(iii)* it can be successful in asymmetric methyl and phenyl transfers (Table *1,* entry 9, and Table 2, entry 2).

We trust, that it is only a matter of time, until the most generally applicable combination of chiral OR^* -groups, conditions, and substrate-types for these enantioselective additions will be elucidated.

We thank Dr. *Hopp* of *Haarmann* & *Reimer GmbH* (Holzminden, Germany) for generous gifts of (-)- and (+)-menthol. *A.* G. *Olivero* thanks the *Rotary Foundation* for an International Fellowship.

REFERENCES

- [I] *B. Weidmann, L. Widler, A. G. Olivero, Ch. D. Maycock* & *D. Seebach,* Helv. Chim. Acta *64,* 357 (198 **1).**
- [2] *M. T. Reetz, R. Steinbach, B. Wenderoth* & *J. Westermann,* Chem. and Ind. *1981,* 541.
- [3] *D. Seebach, H.-0. Kalinowski. B. Bastani, G. Crass, H. Daum, H. Dorr, N.P. DuPreez, V. Ehrig, W. Langer. Ch. Niissler, H.-A. Oei* & *M. Schmidt,* Helv. Chim. Acta *60,* 301 (1977); *D. Seebach* & *W. Langer,* Helv. Chim. Acta *62,* 1701 (1979); *D. Seebach* & *W. Langer,* Helv. Chim. Acta *62,* 1710 (1979); *D. Seebach,* G. *Crass, E.M. Wilka, D. Hilvert* & *E. Brunner,* Helv. Chim. Acta *62,* 2695 (1979).
- [4] *T. Mukaiyama, K. Soai, T. Sato, H. Shimizu* & *K. Suzuki,* J. Am. Chem. Soc. *101,* 1455 (1979).
- [5] *J. P. Mazaleyruf* & *D.J. Cram,* J. Am. Chem. SOC. *203,* 1485 (1981).
- [6] *B. Weidmann* & *D. Seebach,* Helv. Chim. Acta *63,* 2451 (1980).
- [7] *B. Weidmann, Ch. D. Maycock* & *D. Seebach,* Helv. Chim. Acta *64,* 1552 (1981).
- [8] *D. Seebach, E. Hungerbiihler, R. Naej P. Schnurrenberger, B. Weidmann* & *M. Ziiger,* Synthesis *1981,* in press.
- [9] *D. Seebach, H. DGrr. B. Bastani* & *V. Ehrig,* Angew. Chem. *81,* 1002 (1969); ibid. Int. Ed. 8, 982 (1969).
- [101 *D.* C. *Bradley* & *M. J. Hillyer,* J. Chem. **SOC.,** Faraday Trans. *1966,* 2367.
- [111 *E. P. Kyba, G. W. Gokel, F. de Jong, K. Kogu, L. R. Sousa, M. G. Siegel, L. Kaplan.* G. *D. Y. Sogah* & *D.J. Cram,* J. Org. Chem. *42,* 4173 (1977); *R. Noyori, I. Tomino* & *Y. Taminoto,* **J.** Am. Chem. SOC. *101.* 3129 (1979); *R. Noyori, Y. Yamada* & *M. Nishizawa,* Tetrahedron Lett. *22,* 247 (1981).
- [12] *J.P. Guetté, M. Perlat, J. Capillon & D. Beucherot, Tetrahedron Lett, 1974, 2411.*
- [I31 *U. Nagai, T. Shishido, R. Chiba* & *H. Mitsuhashi.* Tetrahedron *21,* 1701 (1981).

^{&#}x27;) This 'auxiliary' is *cheap* in both enantiomeric forms.

^{8,} Other monoterpenes such as borneol, iso-borneol, fenchol *etc.* are being tested.

y, Ketones with enantiotopic carbonyl group faces, as well as the use of zirconium analogues are being tested.