243. Enantioselective Addition of Chiral Organotitanium Derivatives to Aldehydes

Preliminary Communication

by Alan G. Olivero¹), Beat Weidmann²) and Dieter Seebach

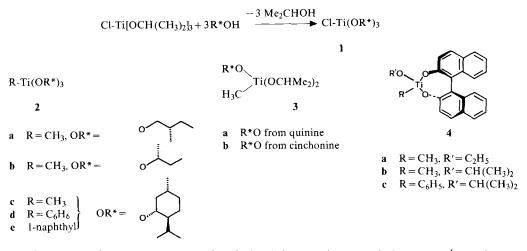
Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätsstrasse 16, CH-8092 Zürich

(30.IX.81)

Summary

Alkoxy- and aryloxy-organotitanium compounds 2-4 derived from (S)-2methyl-1-butanol, (R)-2-butanol, (-)-menthol, quinine, cinchonine, and (S)-1.1'binaphthol are added to aromatic aldehydes to give optically active alcohols 5-10 in enantioselectivities of up to 88% e.e., with nucleophilic transfer of methyl, phenyl, and 1-naphthyl groups. The *Tables 1-3* list the effects of varying the reagents, the substrates, and the reaction conditions of the new asymmetric synthesis.

Based on *single* experiments, there was an earlier optimistic ('8% e.e.... promising') [1] and a later pessimistic ('13% e.e.... disappointingly low') [2] statement concerning enantiomeric excess in asymmetric synthesis with chiral organotitanium reagents. Based on more *extensive* experimentation, we are pleased to announce, that for once the optimists were right, and that we have been able to achieve enantiomeric excesses of up to 88% in such reactions. This result is comparable with or superior to the best data reported in the literature about enantioselective organometallic additions to aldehydes [3-5].


In fact, our activity [1] [6-8] in the field of organotitanium and -zirconium reagents was triggered by the desire to plan asymmetric carbonyl additions more rationally than was possible by exploiting the elusive effects between lithium reagents and chiral solvents [3] [9]. The 'more solid' bonds [10] between titanium and (chiral) OR*-groups (* designating the chirality) are readily made by *iso*-propoxy/R*O-substitution in chloro-triisopropoxytitanium [1] [6] with azeotropic removal of the 2-propanol³) formed.

The chiral chlorotitanates 1 thus prepared are converted *in situ* to the organotitanates 2 by reaction with RLi- or RMgX-derivatives, as described previously [1]

¹) Undergraduate research student at ETH-Zürich (1980/81).

²) Part of the projected Ph.D. thesis of *B. Weidmann*, ETH-Zürich.

³) Benzene can be used as solvent for the azeotropic distillation; it is removed and replaced by the solvent in which the Cl/R-exchange $1 \rightarrow 2$ and the subsequent reactions are carried out.

[6]. Solutions of the reagents 3 and 4 derived from quinine and cinchonine⁴), and from (S)-binaphthol [11]⁵), respectively are obtained similarly. The results of the asymmetric syntheses of the alcohols 5, 6, 7, 9 and 10 and of the lactone 8 by enantioselective addition⁶) of the reagents 2-4 to aldehydes are described in the *Tables 1, 2* and 3, with variations of the OR*-group, of the aldehyde, and of the reaction conditions, respectively.

Entry	Reagent	Product		
	0		[<i>a</i>] _D	% e.e.
1	2a	(<i>S</i>)-5	- 3.64°	8
2	2b	<i>(S)</i> -5	- 5.42°	12
3	2c	(S) -5	-10.46°	23
4	3a	(S)- 5	- 6.32°	14
5	3b	(<i>R</i>)-5	+ 4.50°	10
6	4a	(S)-5	- 12.58°	28
7	4b	(S)- 5	- 26.90°	59
8	2 d	(<i>R</i>)-10	+ 2.87°	29
9	4c	(S)-10	- 8.84°	. 88

Table 1. Additions of differently chirally modified methyl and phenyl titatnium reagents 2-4 to benzaldehyde (entries 1-7) and to p-tolylaldehyde (entries 8 and 9). With 2 and 3 diethyl ether is used as solvent, reaction conditions: 3 h/-60°, then +20°; with 4, solvent: THF, 3 h/-20°. Conditions of a_D-measurement and optical purities see [5] and [12]. Work-up see previous papers [1] [6] [7] and footnote 6.

⁴) Since the Cl of 1 is also replaced by OR in the presence of amines, we used the sequence [Ti (OCHMe₂)₄ + R*OH → Ti (OR*) (OCHMe₂)₃ (A); A + ½ TiCl₄ → ClTi (OR*) (OCHMe₂)₂ (B) + ClTi (OCHMe₂)₃ (C); B/C+ CH₃Li → 3 + CH₃Ti (OCHMe₂)₃] for preparation of 3, with the obvious disadvantage of achiral dilution of the reagent.

⁵) Precursors of 4 (R = Cl) are obtained directly from ClTi(OR')₃ and the binaphthol of $[a]_D = -34.1^{\circ}$ (c = 1, THF) [11] with removal of 2 R'OH.

⁶) The conversions are >95% in all cases. The yields of isolated products depend upon the ease of separation from R*OH, which is volatile in the case of 2a and 2b, and which is soluble in acid or base in the cases of 3 and 4, respectively; with menthol (from 2c-2e) we encountered problems when the product volatility was too high (cf. 5, 8).

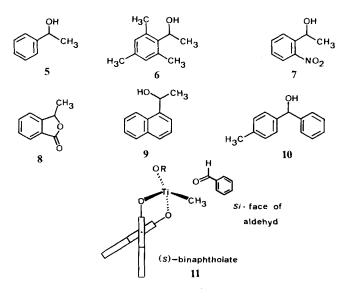


Table 2. Additions of chiral methyl and naphthyl titanium reagents of type 2 and 4 to different aldehydes. For conditions see head of Table 1. The [a]_D-values of optically pure samples and the conditions of measurement were taken from the following references: 6 [3], 8 [13], 9 [3]; 7 was converted to 5 [3] by reduction (Na₂S: NO₂→ NH₂), diazotation (NaNO₂/HCl, 0°; NH₂→ N[⊕]₂), and reduction (HOAc/NaOAc, THF, 20°; N[⊕]₂→ H).

Entry	Aldehyde	Reagent	Product		
				[a] _D	% e.e.
1	Mesityl aldehyde	2c	(<i>R</i>)-6	+ 6.34°	12
2	o-Nitro-benzaldehyde	2 c	(S)-7	+ 140°	76
3	-	4b	(S)-7	+ 7.49°	4
4	Methyl o-formyl-benzoate	2 c	(S)- 8	- 7.58°	25
5	1-Naphthaldehyde	2 c	(S)- 9	- 46°	58
6		4b	(S)- 9	- 37°	46
7	Acetaldehyde	2e	(R)-9	+ 3.81°	5

Table 3. Preparation of alcohol 7 from methyl-trimethoxy-titanium (2c) and o-nitrobenzaldehyde under different reaction conditions. For optical purity of 7 see head of Table 2. Preparation of the solutions of 2c:1 was freed from benzene³), dissolved (ca. 0.1M) in the desired solvent, and combined with a molequiv. of CH₃Li (1.7M in ether). The aldehyde was added at -60° , after 3 h the mixture was warmed to $+20^\circ$ within 12 h. A kryostat with temperature control was used for the experiment of entry 5.

Entry	Solvent	Product 7	
		$[a]_{D}^{25}$	% e.e.
1	Pentane	+ 11.2°	6
2	Ether	+ 140°	76
3	Ether + 1 mol-equiv. $LiClO_4$	+ 16.7°	9
4	THF	- 10.4°	5.5
5	Ether (with warming from -100 to -40° in 60 h)	+ 40°	22

HELVETICA CHIMICA ACTA - Vol. 64, Fasc. 7 (1981) - Nr. 243

It can be seen, that the highest selectivities are obtained with the menthol⁶)⁷)⁸) and with the binaphthol derivatives (entries 7 and 9 in *Table 1*, entries 2, 5, and 6 in *Table 2*). With the axially chiral binaphtholates 4, the nature of the third OR-group appears to be crucial (entries 6 and 7 of *Table 1*), see the topology in **11**.

The examples in *Table 2* indicate that the reaction is strongly substrate-dependant [*cf.* entry 1 (*Re*-approach) with entry 2 (*Si*-approach)] and that it is better to add methyl to naphthaldehyde than naphthyl to acetaldehyde (*cf.* entry 5 with entry 7), other things being equal.

Finally, the strong solvent (5.5% (R) e.e. in THF, 76% (S) e.e. in ether) and temperature (22% e.e. at -100 to -40° , 76% at -60 to $+20^{\circ}$) effects are evident from *Table 3*, entries 4 vs. 2 and entry 5 vs. 2, respectively.

The approach to enantioselective carbonyl additions⁹) by use of simple nonalkali or -alkaline earth alkyl- and aryl-organometallic reagents⁹) described here has the following advantages: (i) It makes use of the full equivalent of the organometallic reagent; (ii) it exhibits a high functional-group selectivity – only aldehydes and ketones are attacked (see products 7 and 8, *Tables 2* and 3, and [1] [6] [7]); (iii) it can be successful in asymmetric methyl and phenyl transfers (*Table 1*, entry 9, and *Table 2*, entry 2).

We trust, that it is only a matter of time, until the most generally applicable combination of chiral OR*-groups, conditions, and substrate-types for these enantioselective additions will be elucidated.

We thank Dr. Hopp of Haarmann & Reimer GmbH (Holzminden, Germany) for generous gifts of (-)- and (+)-menthol. A. G. Olivero thanks the Rotary Foundation for an International Fellowship.

REFERENCES

- [1] B. Weidmann, L. Widler, A.G. Olivero, Ch.D. Maycock & D. Seebach, Helv. Chim. Acta 64, 357 (1981).
- [2] M.T. Reetz, R. Steinbach, B. Wenderoth & J. Westermann, Chem. and Ind. 1981, 541.
- [3] D. Seebach, H.-O. Kalinowski, B. Bastani, G. Crass, H. Daum, H. Dörr, N.P. DuPreez, V. Ehrig, W. Langer, Ch. Nüssler, H.-A. Oei & M. Schmidt, Helv. Chim. Acta 60, 301 (1977); D. Seebach & W. Langer, Helv. Chim. Acta 62, 1701 (1979); D. Seebach & W. Langer, Helv. Chim. Acta 62, 1710 (1979); D. Seebach, G. Crass, E. M. Wilka, D. Hilvert & E. Brunner, Helv. Chim. Acta 62, 2695 (1979).
- [4] T. Mukaiyama, K. Soai, T. Sato, H. Shimizu & K. Suzuki, J. Am. Chem. Soc. 101, 1455 (1979).
- [5] J. P. Mazaleyrat & D.J. Cram, J. Am. Chem. Soc. 103, 1485 (1981).
- [6] B. Weidmann & D. Seebach, Helv. Chim. Acta 63, 2451 (1980).
- [7] B. Weidmann, Ch. D. Maycock & D. Seebach, Helv. Chim. Acta 64, 1552 (1981).
- [8] D. Seebach, E. Hungerbühler, R. Naef, P. Schnurrenberger, B. Weidmann & M. Züger, Synthesis 1981, in press.
- [9] D. Seebach, H. Dörr, B. Bastani & V. Ehrig, Angew. Chem. 81, 1002 (1969); ibid. Int. Ed. 8, 982 (1969).
- [10] D. C. Bradley & M.J. Hillyer, J. Chem. Soc., Faraday Trans. 1966, 2367.
- [11] E. P. Kyba, G. W. Gokel, F. de Jong, K. Koga, L. R. Sousa, M.G. Siegel, L. Kaplan, G. D. Y. Sogah & D.J. Cram, J. Org. Chem. 42, 4173 (1977); R. Noyori, I. Tomino & Y. Taminoto, J. Am. Chem. Soc. 101, 3129 (1979); R. Noyori, Y. Yamada & M. Nishizawa, Tetrahedron Lett. 22, 247 (1981).
- [12] J. P. Guetté, M. Perlat, J. Capillon & D. Beucherot, Tetrahedron Lett. 1974, 2411.

[13] U. Nagai, T. Shishido, R. Chiba & H. Mitsuhashi, Tetrahedron 21, 1701 (1981).

2488

⁷) This 'auxiliary' is *cheap* in both enantiomeric forms.

⁸⁾ Other monoterpenes such as borneol, iso-borneol, fenchol etc. are being tested.

⁹) Ketones with enantiotopic carbonyl group faces, as well as the use of zirconium analogues are being tested.